Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 246
Filter
1.
Article in English | MEDLINE | ID: mdl-38664320

ABSTRACT

The highly stable biomass structure formed by cellulose, hemicellulose, and lignin results in incomplete conversion and carbonization under hydrothermal conditions. In this study, pretreated corn straw hydrochar (PCS-HC) was prepared using a low-temperature alkali/urea combination pretreatment method. The Mass loss rate of cellulose, hemicellulose, and lignin from pretreated biomass, as well as the effects of the pretreatment method on the physicochemical properties of PCS-HC and the adsorption performance of PCS-HC for alkaline dyes (rhodamine B and methylene blue), were investigated. The results showed that the low-temperature NaOH/urea pretreatment effectively disrupted the stable structure formed by cellulose, hemicellulose, and lignin. NaOH played a dominant role in solubilizing cellulose and the combination of low temperature and urea enhanced the ability of NaOH to remove cellulose, hemicellulose, and lignin. Compared to the untreated hydrochar, PCS-HC exhibited a rougher surface, a more abundant pore structure, and a larger specific surface area. The unpretreated hydrochar exhibited an adsorption capacity of 64.8% for rhodamine B and 66.32% for methylene blue. However, the removal of rhodamine B and methylene blue by PCS-BC increased to 89.12% and 90.71%, respectively, under the optimal pretreatment conditions. The PCS-HC exhibited a favorable adsorption capacity within the pH range of 6-9. However, the presence of co-existing anions such as Cl-, SO42-, CO32-, and NO3- hindered the adsorption capacity of PCS-HC. Among these anions, CO32- exhibited the highest level of inhibition. Chemisorption, including complexation, electrostatic attraction, and hydrogen bonding, were the primary mechanism for dye adsorption by PCS-HC. This study provides an efficient method for utilizing agricultural waste and treating dye wastewater.

2.
Mol Ther ; 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38659226

ABSTRACT

Malignant ascites is a common complication resulting from the peritoneal spread of malignancies, and currently lacks effective treatments. We conducted a phase II trial (NCT04771676) to investigate the efficacy and safety of oncolytic adenovirus H101 and virotherapy-induced immune response in 25 patients with malignant ascites. Oncolytic virotherapy achieved an increased median time to repeat paracentesis of 45 days (95% confidence interval 16.5-73.5 days), compared to the preset control value of 13 days. Therapy was well-tolerated, with pyrexia, fatigue, nausea, and abdominal pain as the most common toxicities. Longitudinal single-cell profiling identified marked oncolysis, early virus replication, and enhanced CD8+ T cells-macrophages immune checkpoint crosstalk, especially in responsive patients. H101 also triggered a proliferative burst of CXCR6+ and GZMK+CD8+ T cells with promoted tumor-specific cytotoxicity. Further establishment of oncolytic virus-induced T cell expansion signature (OiTE) implicated the potential benefits for H101-responsive patients from subsequent anti-PD(L)1 therapy. Patients with up-regulated immune-signaling pathways in tumor cells and a higher proportion of CLEC10A+ DCs and GZMK+CD8+ T cells at baseline showed a superior response to H101 treatment. Our study demonstrates promising clinical responses and tolerability of oncolytic adenovirus in treating malignant ascites and provided insights into the relevant cellular processes following oncolytic virotherapy.

3.
Environ Sci Technol ; 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38653213

ABSTRACT

The interaction effects between the main components (proteins (P), carbohydrates (C), and lipids (L)) of protein-rich biomass during microwave-assisted pyrolysis were investigated in depth with an exploration of individual pyrolysis and copyrolysis (PC, PL, and CL) of model compounds. The average heating rate of P was higher than those of C and L, and the interactions in all copyrolysis groups reduced the max instant heating rate. The synergistic extent (S) of PC and PL for bio-oil yield was 16.78 and 18.24%, respectively, indicating that the interactions promoted the production of bio-oil. Besides, all of the copyrolysis groups exhibited a synergistic effect on biochar production (S = 19.43-28.24%), while inhibiting the gas generation, with S ranging from -20.17 to -6.09%. Regarding the gaseous products, apart from H2, P, C, and L primarily generated CO2, CO, and CH4, respectively. Regarding bio-oil composition, the interactions occurring within PC, PL, and CL exhibited a significantly synergistic effect (S = 47.81-412.96%) on the formation of N-heterocyclics/amides, amides/nitriles, and acids/esters, respectively. Finally, the favorable applicability of the proposed interaction effects was verified with microalgae. This study offers valuable insights for understanding the microwave-assisted pyrolysis of protein-rich biomass, laying the groundwork for further research and process optimization.

4.
Sci Rep ; 14(1): 8135, 2024 04 07.
Article in English | MEDLINE | ID: mdl-38584220

ABSTRACT

Aneuploidy is a hallmark of cancers, but the role of aneuploidy-related genes in lung adenocarcinoma (LUAD) and their prognostic value remain elusive. Gene expression and copy number variation (CNV) data were enrolled from TCGA and GEO database. Consistency clustering analysis was performed for molecular cluster. Tumor microenvironment was assessed by the xCell and ESTIMATE algorithm. Limma package was used for selecting differentially expressed genes (DEGs). LASSO and stepwise multivariate Cox regression analysis were used to establish an aneuploidy-related riskscore (ARS) signature. GDSC database was conducted to predict drug sensitivity. A nomogram was designed by rms R package. TCGA-LUAD patients were stratified into 3 clusters based on CNV data. The C1 cluster displayed the optimal survival advantage and highest inflammatory infiltration. Based on integrated intersecting DEGs, we constructed a 6-gene ARS model, which showed effective prediction for patient's survival. Drug sensitivity test predicted possible sensitive drugs in two risk groups. Additionally, the nomogram exhibited great predictive clinical treatment benefits. We established a 6-gene aneuploidy-related signature that could effectively predict the survival and therapy for LUAD patients. Additionally, the ARS model and nomogram could offer guidance for the preoperative estimation and postoperative therapy of LUAD.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Humans , DNA Copy Number Variations/genetics , Adenocarcinoma of Lung/genetics , Algorithms , Aneuploidy , Lung Neoplasms/genetics , Lung Neoplasms/therapy , Tumor Microenvironment
5.
Animals (Basel) ; 14(5)2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38473179

ABSTRACT

The primary factor leading to elevated rates of diarrhea and decreased performance in piglets is immunological stress. The regulation of immune stress through the intestinal flora is a crucial mechanism to consider. In total, 30 weaned piglets were randomly allocated to five groups: the basal diet group (Control), basal diet + lipopolysaccharides group (LPS), basal diet + 250 µg/kg 6-Formylindolo [3,2-b] carbazole + LPS group (FICZ), basal diet + 3mg/kg Cardamonin + LPS group (LCDN), and basal diet + 6mg/kg Cardamonin + LPS group (HCDN/CDN). The results showed that compared with those of the LPS group, the expression of tight junction proteins (occludin; claudin-1) in the FICZ group was significantly increased, and the mRNA levels of IL-1ß and TNF-α were significantly reduced (p < 0.05). HCDN treatment had a better effect on LPS-induced intestinal barrier damage in this group than it did in the LCDN group. HCDN treatment leads to a higher villus height (VH), a higher ratio of villi height to crypt depth (V/C), higher tight junction proteins (ZO-1; occludin), and higher short-chain fatty acids (SCFAs). In addition, correlation analyses showed that Succinivibrio was positively correlated with several SCFAs and negatively correlated with prostaglandin-related derivatives in the FICZ group and CDN group (p < 0.05). In summary, Cardamonin alleviates intestinal mucosal barrier damage and inflammatory responses by regulating the intestinal microbiota and its metabolism.

6.
J Hazard Mater ; 469: 133911, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38430597

ABSTRACT

The activation of peracetic acid (PAA) by activated carbon (AC) is a promising approach for reducing micropollutants in groundwater. However, to harness the PAA/AC system's potential and achieve sustainable and low-impact groundwater remediation, it is crucial to quantify the individual contributions of active species. In this study, we developed a combined degradation kinetic and adsorption mass transfer model to elucidate the roles of free radicals, electron transfer processes (ETP), and adsorption on the degradation of antibiotics by PAA in groundwater. Our findings reveal that ETP predominantly facilitated the activation of PAA by modified activated carbon (AC600), contributing to ∼61% of the overall degradation of sulfamethoxazole (SMX). The carbonyl group (CO) on the surface of AC600 was identified as a probable site for the ETP. Free radicals contributed to ∼39% of the degradation, while adsorption was negligible. Thermodynamic and activation energy analyses indicate that the degradation of SMX within the PAA/AC600 system requires a relatively low energy input (27.66 kJ/mol), which is within the lower range of various heterogeneous Fenton-like reactions, thus making it easily achievable. These novel insights enhance our understanding of the AC600-mediated PAA activation mechanism and lay the groundwork for developing efficient and sustainable technologies for mitigating groundwater pollution. ENVIRONMENTAL IMPLICATION: The antibiotics in groundwater raises alarming environmental concerns. As groundwater serves as a primary source of drinking water for nearly half the global population, the development of eco-friendly technologies for antibiotic-contaminated groundwater remediation becomes imperative. The innovative PAA/AC600 system demonstrates significant efficacy in degrading micropollutants, particularly sulfonamide antibiotics. By integrating degradation kinetics and adsorption mass transfer models, this study sheds light on the intricate mechanisms involved, emphasizing the potential of carbon materials as sustainable tools in the ongoing battle for clean and safe groundwater.


Subject(s)
Groundwater , Water Pollutants, Chemical , Anti-Bacterial Agents , Peracetic Acid , Oxidation-Reduction , Charcoal , Adsorption , Electrons , Hydrogen Peroxide , Sulfamethoxazole
7.
J Hazard Mater ; 470: 134166, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38554511

ABSTRACT

UV/peracetic acid (PAA) treatment presents a promising approach for antibiotic removal, but its effects on microbial community and proliferation of antibiotic resistance genes (ARGs) during the subsequent bio-treatment remain unclear. Thus, we evaluated the effects of the UV/PAA on tetracycline (TTC) degradation, followed by introduction of the treated wastewater into the bio-treatment system to monitor changes in ARG expression and biodegradability. Results demonstrated effective TTC elimination by the UV/PAA system, with carbon-centered radicals playing a significant role. Crucially, the UV/PAA system not only eliminated antibacterial activity but also inhibited potential ARG host growth, thereby minimizing the emergence and dissemination of ARGs during subsequent bio-treatment. Additionally, the UV/PAA system efficiently removed multi-antibiotic resistant bacteria and ARGs from the bio-treatment effluent, preventing ARGs from being released into the environment. Hence, we propose a multi-barrier strategy for treating antibiotic-containing wastewater, integrating UV/PAA pre-treatment and post-disinfection with bio-treatment. The inhibition of ARGs transmission by the integrated system was verified through actual soil testing, confirming its effectiveness in preventing ARGs dissemination in the surrounding natural ecosystem. Overall, the UV/PAA treatment system offers a promising solution for tackling ARGs challenges by controlling ARGs proliferation at the source and minimizing their release at the end of the treatment process.


Subject(s)
Anti-Bacterial Agents , Peracetic Acid , Ultraviolet Rays , Wastewater , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Peracetic Acid/pharmacology , Tetracycline/pharmacology , Drug Resistance, Microbial/genetics , Genes, Bacterial/drug effects , Water Purification/methods , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/toxicity , Bacteria/drug effects , Bacteria/genetics , Bacteria/radiation effects , Disinfection/methods , Biodegradation, Environmental
8.
Chemosphere ; 352: 141515, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38387659

ABSTRACT

Anaerobically digested swine wastewater (ASW) purification by microalgae provides a promising strategy for nutrients recovery, biomass production and CO2 capture. However, the characteristics of ASW from different cleaning processes vary greatly. At present, the cultivation of microalgae in ASW from different manure cleaning processes is rarely investigated and compared. That may bring uncertainty for microalgae growth using different ASW in large-scale application. Thus, the ASW from three cleaning processes were tested for cultivating microalgae, including manure dry collection (I), water flushing (II) and water submerging processes (III). The characteristics of ASW from three manure cleaning processes varied greatly such as nutrient and heavy metals levels. High concentration of ammonia and copper in ASW significantly inhibited microalgae growth. Fortunately, the supply of high CO2 (10%) effectively alleviated negative influences, ensuring microalgal growth at low dilution ratio. The characteristics of three ASW resulted in significant differences in microalgae growth and biomass components. The maximal biomass production in optimal diluted ASW-I, II and III reached 1.46 g L-1, 2.19 g L-1 and 2.47 g L-1, respectively. The removal of organic compounds, ammonia and phosphorus by optimal microalgae growth in diluted ASW-I, II and III was 50.6%/94.2%/64.7%, 63.7%/82.3%/57.6% and 83.2%/91.7%/59.7%, respectively. The culture in diluted ASW-I, II and III obtained the highest lipids production of 12.1 mg L-1·d-1, 16.5 mg L-1·d-1 and 19.4 mg L-1·d-1, respectively. The analysis of lipids compositions revealed that the proportion of saturated fatty acids accounted for 36.4%, 32.4% and 27.9 % in optimal diluted ASW-I, II and III, as ideal raw materials for biodiesel production.


Subject(s)
Chlorophyceae , Environmental Pollutants , Microalgae , Scenedesmus , Animals , Swine , Wastewater , Biomass , Manure , Ammonia , Carbon Dioxide , Nitrogen , Fatty Acids , Biofuels , Water
9.
Sci Total Environ ; 922: 171201, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38417506

ABSTRACT

Mycelial pellets formed by Penicillium thomii ZJJ were applied as efficient biosorbents for the removal of polycyclic aromatic hydrocarbons (PAHs), which are a type of ubiquitous harmful hydrophobic pollutants. The live mycelial pellets were able to remove 93.48 % of pyrene at a concentration of 100 mg/L within 48 h, demonstrating a maximum adsorption capacity of 285.63 mg/g. Meanwhile, the heat-killed one also achieved a removal rate of 65.01 %. Among the six typical PAHs (pyrene, phenanthrene, fluorene, anthracene, fluoranthene, benzo[a]pyrene), the mycelial pellets preferentially adsorbed the high molecular weight PAHs, which also have higher toxicity, resulting in higher removal efficiency. The experimental results showed that the biosorption of mycelial pellets was mainly a spontaneous physical adsorption process that occurred as a monolayer on a homogeneous surface, with mass transfer being the key rate-limiting step. The main adsorption sites on the surface of mycelia were carboxyl and N-containing groups. Extracellular polymeric substances (EPS) produced by mycelial pellets could enhance adsorption, and its coupling with dead mycelia could achieve basically the same removal effect to that of living one. It can be concluded that biosorption by mycelial pellets occurred due to the influence of electrostatic and hydrophobic interactions, consisting of five steps. Furthermore, the potential applicability of mycelial pellets has been investigated considering diverse factors. The mycelia showed high environmental tolerance, which could effectively remove pyrene across a wide range of pH and salt concentration. And pellets diameters and humic acid concentration had a significant effect on microbial adsorption effect. Based on a cost-effectiveness analysis, mycelium pellets were found to be a low-cost adsorbent. The research outcomes facilitate a thorough comprehension of the adsorption process of pyrene by mycelial pellets and their relevant applications, proposing a cost-effective method without potential environmental issues (heat-killed mycelial pellets plus EPS) to removal PAHs.


Subject(s)
Polycyclic Aromatic Hydrocarbons , Polycyclic Aromatic Hydrocarbons/analysis , Adsorption , Pyrenes , Mycelium
10.
Bioresour Technol ; 395: 130413, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38310979

ABSTRACT

The production of medium chain fatty acids (MCFAs) through chain elongation (CE) from organic wastes/wastewater has attracted much attention, while the effects of a common inhibitor-ammonia has not been elucidated. The mechanism of ammonia affecting CE was studied by metagenomic. The lag phase duration of caproate production was increased, and the maximum caproate production rate was decreased by 43.4 % at 4 g-N/L, as compared to 0 g-N/L. And hydrochar (HC) alleviated the inhibition of ammonia at 4 g-N/L. Metagenomic analysis indicated that ammonia induced UBA4085 sp.FDU78 as the dominant microorganism, and metabolic reconstruction revealed its potential CE ability. Furthermore, ammonia inhibited the reverse ß oxidation pathway and Acetyl-CoA production pathway. The tolerance of UBA4085 sp.FDU78 to ammonia was associated with the uptake of inorganic ions, energy conservation, and synthesis of osmoprotectants. The present study provided a deep-insight on the ammonia tolerance mechanism on the CE process.


Subject(s)
Ammonia , Caproates , Caproates/metabolism , Fatty Acids , Bioreactors , Fermentation
11.
J Hazard Mater ; 465: 133446, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38219578

ABSTRACT

Polyethylene terephthalate (PET or polyester) is a commonly used plastic and also contributes to the majority of plastic wastes. Mealworms (Tenebrio molitor larvae) are capable of biodegrading major plastic polymers but their degrading ability for PET has not been characterized based on polymer chain size molecular size, gut microbiome, metabolome and transcriptome. We verified biodegradation of commercial PET by T. molitor larvae in a previous report. Here, we reported that biodegradation of commercial PET (Mw 29.43 kDa) was further confirmed by using the δ13C signature as an indication of bioreaction, which was increased from - 27.50‰ to - 26.05‰. Under antibiotic suppression of gut microbes, the PET was still depolymerized, indicating that the host digestive enzymes could degrade PET independently. Biodegradation of high purity PET with low, medium, and high molecular weights (MW), i.e., Mw values of 1.10, 27.10, and 63.50 kDa with crystallinity 53.66%, 33.43%, and 4.25%, respectively, showed a mass reduction of > 95%, 86%, and 74% via broad depolymerization. Microbiome analyses indicated that PET diets shifted gut microbiota to three distinct structures, depending on the low, medium, and high MW. Metagenome sequencing, transcriptomic, and metabolic analyses indicated symbiotic biodegradation of PET by the host and gut microbiota. After PET was fed, the host's genes encoding degradation enzymes were upregulated, including genes encoding oxidizing, hydrolyzing, and non-specific CYP450 enzymes. Gut bacterial genes for biodegrading intermediates and nitrogen fixation also upregulated. The multiple-functional metabolic pathways for PET biodegradation ensured rapid biodegradation resulting in a half-life of PET less than 4 h with less negative impact by PET MW and crystallinity.


Subject(s)
Tenebrio , Animals , Tenebrio/metabolism , Tenebrio/microbiology , Polystyrenes/metabolism , Polyethylene Terephthalates/metabolism , Polymers , Larva/metabolism , Polyethylene/metabolism , Plastics/metabolism , Biodegradation, Environmental , Metabolome
12.
Appl Opt ; 63(2): 415-422, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38227237

ABSTRACT

This study explores the utilization of a liquid crystal lens with a shiftable axis for true-color and super-resolution imaging. By maintaining the optical power and shifting the axis of the liquid crystal lens, precise sub-pixel level shifts are applied to the images formed on the sensor, enabling the construction of true-color and super-resolution images. A comparative analysis with the traditional interpolation-based demosaicing method reveals that true-color imaging not only enhances clarity and effective pixel count, but also significantly reduces occurrences of false color, edge aliasing, and color moiré artifacts.

13.
Chemosphere ; 346: 140601, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37918536

ABSTRACT

Due to the diversity and variability of harmful ions in polluted water bodies, the selective removal and separation for specific ions is of great significance in water purification and resource processes. Capacitive deionization (CDI), an emerging desalination technology, shows great potential to selectively remove harmful ionic pollutants and further recover valuable ions because of the simple operation and low energy consumption. Researchers have done a lot of work to investigate ion selectivity utilizing CDI, including both theoretical and experimental studies. Nevertheless, in the investigation of selective mechanisms, phenomena where carbon materials exhibit entirely opposite selectivity require further analysis. Furthermore, there is a need to summarize the specific chemical reaction mechanisms, including the formation of hydrogen bonds, complexation reactions, and ligand exchanges, within selective electrodes, which have not been thoroughly examined in detail previously. In order to fill these gaps, in this review, we summarized the recent progress of CDI technologies for ion selective separation, and explored the selective separation mechanism of CDI from three aspects: selective physical adsorption, specific chemical reaction, and the utilization of selective barriers. Additionally, this review analyzes in detail the formation process of chemical bonds and ion conversion pathways when ions interact with electrode materials. Finally, some significant development prospects and challenges were offered for the future selective CDI systems. We believe the review will provide new insights for researchers in the field of ion selective separation.


Subject(s)
Carbon , Water Purification , Ions/chemistry , Electrodes , Adsorption
14.
Article in English | MEDLINE | ID: mdl-38015404

ABSTRACT

The ever-increasing concern for energy shortages and greenhouse effect has triggered the development of sustainable green technologies. Microalgae have received more attention due to the characteristics of biofuel production and CO2 fixation. From the perspective of autotrophic growth, the optimization of light quality has the potential to promote biomass production and bio-component accumulation in microalgae at low cost. In this study, bibliometric analysis was used to describe the basic features, identify the hotspots, and predict future trends of the research related to the light quality on microalgae cultivation. In addition, a mini-review referring to regulation methods of light quality was provided to optimize the framework of research. Results demonstrated that China has the greatest interest in this area. The destination of most research was to obtain biofuels and high-value-added products. Both blue and red lights were identified as the crucial spectrums for microalgae cultivation. However, sunlight is the most affordable light resource, which could not be fully utilized by microalgae through the photosynthetic process. Hence, some regulation approaches (e.g., dyes, plasmonic scattering, and carbon-based quantum dots) are proposed to increase the proportion of beneficial spectrum for enhancement of photosynthetic efficiency. In summary, this review introduces state-of-the-art research and provides theoretical guidance for light quality optimization in microalgae cultivation to obtain more benefits.

15.
Chemosphere ; 345: 140491, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37863207

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) in aquatic environments are threatening ecosystems and human health. In this work, an effective and environmentally friendly catalyst based on biochar and molecular imprinting technology (MIT) was developed for the targeted degradation of PAHs by activating peroxymonosulfate. The results show that the adsorption amount of naphthalene (NAP) by molecularly imprinted biochar (MIP@BC) can reach 82% of the equilibrium adsorption capacity within 5 min, and it had well targeted adsorption for NAP in the solution mixture of NAP, QL and SMX. According to the comparison between the removal rates of NAP and QL by MIP@BC/PMS or BC/PMS system in respective pure solutions or mixed solutions, the MIP@BC/PMS system can better resist the interference of competing pollutants (i.e., QL) compared to the BC/PMS system; that is, MIP@BC had a good ability to selectively degrade NAP. Besides, the removal rate of NAP by MIP@BC/PMS gradually decreased as pH increased. The addition of Cl- greatly promoted the targeted removal of NAP in the MIP@BC/PMS system, while HCO3- and CO32- both had an inhibitory effect. Furthermore, SO4•-, O2•- and 1O2 produced by BC activating PMS dominated the NAP degradation, and it was inferred that the vacated imprinted cavities after NAP degradation can continue to selectively adsorb NAP and this could facilitate the reusability of the material. This study can promote the research on the targeted degradation of PAHs through the synergism of biochar/PMS advanced oxidation processes and MIT.


Subject(s)
Ecosystem , Polycyclic Aromatic Hydrocarbons , Humans , Charcoal/chemistry , Naphthalenes , Peroxides/chemistry
16.
Water Res ; 244: 120555, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37666149

ABSTRACT

Herein, biochar was prepared using rice straw, and it served as the peroxymonosulfate (PMS) activator to degrade naphthalene (NAP). The results showed that pyrolysis temperature has played an important role in regulating biochar structure and properties. The biochar prepared at 900°C (BC900) had the best activation capacity and could remove NAP in a wide range of initial pH (5-11). In the system of BC900/PMS, multi-reactive species were produced, in which 1O2 and electron transfer mainly contributed to NAP degradation. In addition, the interference of complex groundwater components on the NAP removal rate must get attention. Cl- had a significant promotional effect but risked the formation of chlorinated disinfection by-products. HCO3-, CO32-, and humic acid (HA) had an inhibitory effect; surfactants had compatibility problems with the BC900/PMS system, which could lead to unproductive consumption of PMS. Significantly, the BC900/PMS system showed satisfactory remediation performance in spiked natural groundwater and soil, and it could solve the problem of persistent groundwater contamination caused by NAP desorption from the soil. Besides, the degradation pathway of NAP was proposed, and the BC900/PMS system could degrade NAP into low or nontoxic products. These suggest that the BC900/PMS system has promising applications in in-situ groundwater remediation.


Subject(s)
Groundwater , Oryza , Soil , Naphthalenes
17.
Front Bioeng Biotechnol ; 11: 1258483, 2023.
Article in English | MEDLINE | ID: mdl-37662433

ABSTRACT

Environmental pollution with potentially toxic elements (PTEs) has become one of the critical and pressing issues worldwide. Although these pollutants occur naturally in the environment, their concentrations are continuously increasing, probably as a consequence of anthropic activities. They are very toxic even at very low concentrations and hence cause undesirable ecological impacts. Thus, the cleanup of polluted soils and water has become an obligation to ensure the safe handling of the available natural resources. Several remediation technologies can be followed to attain successful remediation, i.e., chemical, physical, and biological procedures; yet many of these techniques are expensive and/or may have negative impacts on the surroundings. Recycling agricultural wastes still represents the most promising economical, safe, and successful approach to achieving a healthy and sustainable environment. Briefly, biochar acts as an efficient biosorbent for many PTEs in soils and waters. Furthermore, biochar can considerably reduce concentrations of herbicides in solutions. This review article explains the main reasons for the increasing levels of potentially toxic elements in the environment and their negative impacts on the ecosystem. Moreover, it briefly describes the advantages and disadvantages of using conventional methods for soil and water remediation then clarifies the reasons for using biochar in the clean-up practice of polluted soils and waters, either solely or in combination with other methods such as phytoremediation and soil washing technologies to attain more efficient remediation protocols for the removal of some PTEs, e.g., Cr and As from soils and water.

18.
Water Res ; 245: 120642, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37774539

ABSTRACT

Phosphorus (P) recovery from human manure (HM) is critical for food production security. For the first time, a one-step hydrothermal carbonation (HTC) treatment of HM was proposed in this study for the targeted high-bioavailable P recovery from P-rich hydrochars (PHCs) for direct soil application. Furthermore, the mechanism for the transformation of P speciation in the derived PHCs was also studied at the molecular level. A high portion of P (80.1∼89.3%) was retained in the solid phase after HTC treatment (120∼240°C) due to high metal contents. The decomposition of organophosphorus (OP) into high-bioavailable orthophosphate (Ortho-P) was accelerated when the HTC temperature was increased, reaching ∼97.1% at 210°C. In addition, due to the high content of Ca (40.45±2.37 g/kg) in HM, the HTC process promoted the conversion of low-bioavailable non-apatite inorganic (NAIP) into high-bioavailable apatite inorganic P (AP). In pot experiments with pea seedling growth, the application of newly obtained PHCs significantly promoted plant growth, including average wet/dry weight and plant height. Producing 1 ton of PHCs (210°C) with the same effective P content as agricultural-type calcium superphosphate could result in a net return of $58.69. More importantly, this pathway for P recovery is predicted to meet ∼38% of the current agricultural demand.

19.
Environ Sci Technol ; 57(40): 15099-15111, 2023 10 10.
Article in English | MEDLINE | ID: mdl-37751481

ABSTRACT

It remains unknown whether plastic-biodegrading macroinvertebrates generate microplastics (MPs) and nanoplastics (NPs) during the biodegradation of plastics. In this study, we utilized highly sensitive particle analyzers and pyrolyzer-gas chromatography mass spectrometry (Py-GCMS) to investigate the possibility of generating MPs and NPs in frass during the biodegradation of polystyrene (PS) and low-density polyethylene (LDPE) foams by mealworms (Tenebrio molitor larvae). We also developed a digestive biofragmentation model to predict and unveil the fragmentation process of ingested plastics. The mealworms removed 77.3% of ingested PS and 71.1% of ingested PE over a 6-week test period. Biodegradation of both polymers was verified by the increase in the δ13C signature of residual plastics, changes in molecular weights, and the formation of new oxidative functional groups. MPs accumulated in the frass due to biofragmentation, with residual PS and PE exhibiting the maximum percentage by number at 2.75 and 7.27 µm, respectively. Nevertheless, NPs were not detected using a laser light scattering sizer with a detection limit of 10 nm and Py-GCMS analysis. The digestive biofragmentation model predicted that the ingested PS and PE were progressively size-reduced and rapidly biodegraded, indicating the shorter half-life the smaller plastic particles have. This study allayed concerns regarding the accumulation of NPs by plastic-degrading mealworms and provided critical insights into the factors controlling MP and NP generation during macroinvertebrate-mediated plastic biodegradation.


Subject(s)
Polystyrenes , Tenebrio , Animals , Polyethylene , Tenebrio/metabolism , Plastics , Larva/metabolism , Biodegradation, Environmental , Microplastics
20.
Chemosphere ; 344: 140300, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37777089

ABSTRACT

Surface electron transport and transfer of catalysts have important consequences for persulfate (PS) activation in PS system. In this paper, an electron-rich Cu-beta zeolites catalyst was synthesized utilizing a straightforward solid-state ion exchange technique to efficiently degrade sulfadiazine. The X-ray diffraction (XRD) and fourier transform infrared spectroscopy (FTIR) results revealed that Cu element substitutes Al element and enters the beta molecular sieve framework smoothly. Furthermore, the X-ray photoelectron spectroscopy (XPS) measurements demonstrated that the Cu-beta catalyst is primarily Cu0. Cu-beta zeolites catalyst can exhibit excellent catalytic activity to degrade sulfadiazine with the oxidant of PS. The optimal sulfadiazine removal performance was explored by adjusting reaction parameters, including sulfadiazine concentration, catalyst dosage, oxidant dosage, and solution pH. The sulfadiazine removal efficiency in the Cu-beta zeolites/PS system could reach 90.5% at the optimal reaction condition ([PS]0 = 0.5 g/L, [Cu-beta zeolites]0 = 1.0 g/L, pH = 7.0) with 50 mg/L of sulfadiazine. Meanwhile, The degradation efficiency was less affected by anionic interference (Cl-, SO4-, HCO3-). The surface electron transport and transfer of the Cu-beta zeolites catalyst were significant causes for the remarkable degradation performance. According to electron paramagnetic resonance (EPR) and quenching studies, the Cu-beta zeolites/PS system was mostly dominated by SO4•- in the degradation of sulfadiazine. Furthermore, two possible pathways for sulfadiazine degradation were proposed according to the analysis of intermediate products detected by the liquid chromatography-mass spectrometry (LC-MS).


Subject(s)
Water Pollutants, Chemical , Zeolites , Sulfadiazine , Oxidation-Reduction , Electrons , Oxidants , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...